Integration of the proteome and transcriptome reveals multiple levels of gene regulation in the rice dl2 mutant
نویسندگان
چکیده
Leaf vascular system differentiation and venation patterns play a key role in transporting nutrients and maintaining the plant shape, which is an important agronomic trait for improving photosynthetic efficiency. However, there is little knowledge about the regulation of leaf vascular specification and development. Here we utilized the rice midribless mutant (dl2) to investigate the molecular changes in transcriptome and proteome profiles during leaf vascular specification and differentiation. Using isobaric tags for relative and absolute quantification (iTRAQ) with digital gene expression (DGE) techniques, a nearly complete catalog of expressed protein and mRNA was acquired. From the catalog, we reliably identified 3172 proteins and 9,865,230 tags mapped to genes, and subsets of 141 proteins and 98 mRNAs, which were differentially expressed between the dl2 mutant and wild type. The correlation analysis between the abundance of differentially expressed mRNA and DEPs (differentially expressed proteins) revealed numerous discordant changes in mRNA/protein pairs and only a modest correlation was observed, indicative of divergent regulation of transcription and translational processes. The DEPs were analyzed for their involvement in biological processes and metabolic pathways. Up- or down- regulation of some key proteins confirmed that the physiological process of vascular differentiation is an active process. These key proteins included those not previously reported to be associated with vascular differentiation processes, and included proteins that are involved in the spliceosome pathway. Together, our results show that the developmental and physiological process of the leaf vascular system is a thoroughly regulated and complicated process and this work has identified potential targets for genetic modification that could be used to regulate the development of the leaf vasculature.
منابع مشابه
Isolation and molecular characterization of the RecQsim gene in Arabidopsis, rice (Oryza sativa) and rape (Brassica napus)
In any organism that reproduces sexually, DNA Recombination plays vital roles in the generation of allelic diversity as well as in preservation of genome fidelity. Genome fidelity is particularly important in plants because mutations occurring during the development of flowering plants are heritable and can be passed onto the next generation. One of the gene families that play crucial roles in ...
متن کاملPhysiological and biochemical evaluation of sixth generation of rice (Oryza sativa L.) mutant lines under salinity stress
In order to physiological and biochemical evaluation of seventh generation of rice mutant tolerant lines under salinity stress, an experiment was carried out as split plot arranged in a Completely Randomized Design with four replications. Main factor of experiment includes three levels of salt stress (0, 45, 75 mmol/l) and sub factor include 5 local rice mutant lines contain Tarom Hashemi 1, Ta...
متن کاملComplementary Proteome and Transcriptome Profiling in Developing Grains of a Notched-Belly Rice Mutant Reveals Key Pathways Involved in Chalkiness Formation
Rice grain chalkiness is a highly complex trait involved in multiple metabolic pathways and controlled by polygenes and growth conditions. To uncover novel aspects of chalkiness formation, we performed an integrated profiling of gene activity in the developing grains of a notched-belly rice mutant. Using exhaustive tandem mass spectrometry-based shotgun proteomics and whole-genome RNA sequencin...
متن کاملStudy of antioxidant defense genes expression profile pattern of rice (Oryza sativa L.) cultivars in response to drought stress
Drought stress is one of the important factors that restrict crop production in the world. This study was conducted to investigate defense gene expression in response to drought stress, and also to evaluate the drought tolerance and its mechanism in rice cultivars based on randomized complete block design in two separate environments (drought stress and non-stress). The rice cultivars used incl...
متن کاملRelationship between Improvement of the Baking Quality and Down-Regulation of Dx2 and Dy12 Genes in Mutant Bread Wheat
In current research, the expression level of Dx2 and Dy12 genes on Glu-D1 locus that encoding the high-molecular-weight glutenin subunits (HMW-GSs), with negative impact on quality of bakery in genotype mutant bread wheat called RO-3 with high quality of bakery and its parent (Roshan) with low quality of bakery was investigated. For this purpose, sampling was performed grains at intervals of 5,...
متن کامل